

OUTLINE

- □ Program Objectives
- □ Partners and Roles
- □ Project Workplan
 - ✓ Field Demonstration
 - ✓ Emissions Testing
 - ✓ Fuels Matrix Testing
- Technology Issues
- Current Results

PROJECT OBJECTIVES

- □ Evaluate the particulate emissions reductions available using JM's CRT [™] technology in conjunction with reduced sulfur diesel fuel
- Evaluate the applicability of the technology to both new 4-stroke and older 2-stroke diesel engines
- Evaluate the maintainability and durability of CRTs in rigorous New York City bus service
- Evaluate fuel parameters that can enhance future commercial success

TECHNOLOGY

- Continuously Regenerating Technology
 - ✓ Oxidation catalyst and wall-flow ceramic filter
 - ✓ Packaged to replicate OEM muffler dimensions
 - ✓ No moving parts
 - ✓ No external energy requirements
- Reduced Sulfur Diesel Fuel
 - ✓ Base specification similar to #1 Diesel
 - ✓ Sulfur level of 30 ppm (350 500 ppm standard)
 - ✓ Lubricity enhancement

PROJECT PARTNERS

- □ Johnson Matthey CRT technology
- Corning ceramic filters
- Equilon reduced sulfur diesel fuel
- Environment Canada emissions testing
- New York State Department of Environmental Conservation - program development/testing
- □ RAD Energy fuel logistics
- MTA New York City Transit bus operations

Budget

CRT Purchase/Installa	tion	\$497,055
Reduced Sulfur Fuel P	urchase	\$761,364
Emissions Testing		\$228,678
Fuels Matrix Testing		\$311,826
Technical Support		\$170,470
Project Management		<u>\$108,280</u>
	Total	\$2,077,673

PROJECT WORKPLAN

- □ Fleet Demonstration
 - ✓ In service test of 50 buses for 1 year
- Emissions Testing
 - ✓ Baseline testing
 - ✓ Durability testing
- □ Fuels Matrix Evaluation
 - ✓ Fuel additives
 - ✓ Sulfur sensitivity
 - ✓ Aromatics content

FLEET DEMONSTRATION

- 50 buses equipped with CRT systems in revenue service in Manhattan for one year
 - ✓ 25 1999 buses with Detroit Diesel Series 50 engines
 - ✓ 25 1993 buses with Detroit Diesel 6V92 DDEC engines
- ☐ One entire depot (140 buses) to operate on reduced sulfur fuel for one year (1.2 mill gallons)
- 4 buses equipped with continuous data loggers; all others will be monitored monthly for changes in engine back-pressure, and fuel economy

EMISSIONS TESTING

- ☐ 4 buses tested at the beginning of the program

 ✓ 2 w/ DDC Series 50 engine; 2 w/ DDC 6V92 engine
- □ Each bus tested with OEM muffler/standard fuel, with OEM muffler/30 ppm sulfur fuel, and with CRT system/30 ppm sulfur fuel
- Test on chassis dynomometer using CBD and New York bus cycles
- Collect info on criteria emissions (CO, HC,NOx, PM), plus particle size and toxicity
- □ Re-test each bus after 9 12 months in service

CHASSIS DYNOMOMETER

FUELS MATRIX TESTING

- □ Test various fuel formulations on engine dyno using a 1996 DDC Series 50 Urban bus engine
- ☐ Fuel formulations will vary by sulfur content, aromatics content, proprietary additive packages
- If a new formulations is judged superior to reference reduced sulfur fuel, perform limited field testing
 - ✓ Equip 2 Series 50 OC Transpo Buses with CRTs and data loggers, operate for 3 months
 - ✓ Chassis dyno emissions test

ENGINE TEST CELL

FUEL LOGISTICS

- Purchase and use of non-commercial fuel requires special handling
 - ✓ Segregated bulk transportation (barge)
 - ✓ Segregated bulk storage in NYC region
 - ✓ Segregated delivery to depot
- Project purchased all 1.2 million gallons in a single batch to ensure product consistency
- Testing fuel came from same batch as fuel used in fleet demonstration
- Handling is largest share of incremental cost

CURRENT RESULTS 6V92

- □ Prototype CRT system successfully demonstrated in service for 2 weeks
- In-service exhaust temperatures at lower margin of acceptable especially with low ambient temperatures
- Improved insulation of exhaust path has helped
- □ We are investigating ways to temper intake air temperature by routing from engine compartment
- Fleet demonstration to kick-off later this spring

CRT INSTALLATION 6V92 Engine

6V92 EXHAUST TEMPERATURE (without insulation)

6V92 EXHAUST TEMPERATURE (with Insulation)

6V92 EXHAUST TEMPERATURE

6V92 BACK PRESSURE*

CURRENT RESULTS S50

- □ Prototype testing showed in-service exhaust temperatures to be very acceptable
- ☐ Fleet demonstration kicked off Feb. 1, 2000
- Currently have 22 CRT buses in service
- CRT buses have logged 37,298 miles
- No CRT-related road calls to date; MBDF of CRT fleet is equivalent to non-CRT buses
- No back-pressure problems to date

CRT INSTALLATION S50 Engine

S50 EXHAUST TEMPERATURE

S50 EXHAUST TEMPERATURE

S50 BACK PRESURE*

FUTURE SCHEDULE

- □ Complete baseline emissions testing by 4/14/00
- □ Begin 6V92 Fleet Demonstration when the weather warms up (3/27/00)
- Conduct Fuels Matrix Testing beginning 4/24/00
- □ Complete Fleet demonstration when the 30 ppm fuel runs out (1/16/01)
- Conduct durability emissions testing (1/16/01)